Introducing the Forecasts API — Event-driven forecasts for precise demand planning. Fast, accurate, and easy to run.
Explore Now
LogoLogo
Visit websiteWebAppGet DemoTry for Free
  • Introduction
  • Swagger UI
  • Loop
  • System Status
  • Getting Started
    • API Quickstart
    • Data Science Notebooks
    • PredictHQ Data
      • Data Accuracy
      • Event Categories
        • Attendance-Based Events
        • Non-Attendance-Based Events
        • Unscheduled Events
        • Live TV Events
      • Labels
      • Entities
      • Ranks
        • PHQ Rank
        • Local Rank
        • Aviation Rank
      • Predicted Attendance
      • Predicted End Times
      • Predicted Event Spend
      • Predicted Events
      • Predicted Impact Patterns
    • Guides
      • Geolocation Guides
        • Overview
        • Searching by Location
          • Find Events by Latitude/Longitude and Radius
          • Find Events by Place ID
          • Find Events by IATA Code
          • Find Events by Country Code
          • Find Events by Placekey
          • Working with Location-Based Subscriptions
        • Understanding Place Hierarchies
        • Working with Polygons
        • Join Events using Placekey
      • Date and Time Guides
        • Working with Recurring Events
        • Working with Multi-day and Umbrella Events
        • Working with Dates, Times and Timezones
      • Events API Guides
        • Understanding Relevance Field in Event Results
        • Attendance-Based Events Notebooks
        • Non-Attendance-Based Events Notebooks
        • Severe Weather Events Notebooks
        • Academic Events Notebooks
        • Working with Venues Notebook
      • Features API Guides
        • Increase Accuracy with the Features API
        • Get ML Features
        • Demand Forecasting with Event Features
      • Forecasts API Guides
        • Getting Started with Forecasts API
        • Understanding Forecast Accuracy Metrics
        • Troubleshooting Guide for Forecasts API
      • Live TV Event Guides
        • Find Broadcasts by County Place ID
        • Find Broadcasts by Latitude and Longitude
        • Find all Broadcasts for an Event
        • Find Broadcasts for Specific Sport Types
        • Aggregating Live TV Events
        • Live TV Events Notebooks
      • Beam Guides
        • ML Features by Location
        • ML Features by Group
      • Demand Surge API Guides
        • Demand Surge Notebook
      • Guide to Protecting PredictHQ Data
      • Streamlit Demo Apps
      • Guide to Bulk Export Data via the WebApp
      • Industry-Specific Event Filters
      • Using the Snowflake Retail Sample Dataset
      • Tutorials
        • Filtering and Finding Relevant Events
        • Improving Demand Forecasting Models with Event Features
        • Using Event Data in Power BI
        • Using Event Data in Tableau
        • Connecting to PredictHQ APIs with Microsoft Excel
        • Loading Event Data into a Data Warehouse
        • Displaying Events in a Heatmap Calendar
        • Displaying Events on a Map
    • Tutorials by Use Case
      • Demand Forecasting with ML Models
      • Dynamic Pricing
      • Inventory Management
      • Workforce Optimization
      • Visualization and Insights
  • Integrations
    • Integration Guides
      • Keep Data Updated via API
      • Integrate with Beam
      • Integrate with Loop Links
    • Third-Party Integrations
      • Receive Data via Snowflake
        • Example SQL Queries for Snowflake
        • Snowflake Data Science Guide
          • Snowpark Method Guide
          • SQL Method Guide
      • Receive Data via AWS Data Exchange
        • CSV/Parquet Data Structure for ADX
        • NDJSON Data Structure for ADX
      • Integrate with Databricks
      • Integrate with Tableau
      • Integrate with a Demand Forecast in PowerBI
      • Google Cloud BigQuery
    • PredictHQ SDKs
      • Python SDK
      • Javascript SDK
  • API Reference
    • API Overview
      • Authenticating
      • API Specs
      • Rate Limits
      • Pagination
      • API Changes
      • Attribution
      • Troubleshooting
    • Events
      • Search Events
      • Get Event Counts
    • Broadcasts
      • Search Broadcasts
      • Get Broadcasts Count
    • Features
      • Get ML Features
    • Forecasts
      • Models
        • Create Model
        • Update Model
        • Replace Model
        • Delete Model
        • Search Models
        • Get Model
        • Train Model
      • Demand Data
        • Upload Demand Data
        • Get Demand Data
      • Forecasts
        • Get Forecast
      • Algorithms
        • Get Algorithms
    • Beam
      • Create an Analysis
      • Upload Demand Data
      • Search Analyses
      • Get an Analysis
      • Update an Analysis
      • Partially Update an Analysis
      • Get Correlation Results
      • Get Feature Importance
      • Refresh an Analysis
      • Delete an Analysis
      • Analysis Groups
        • Create an Analysis Group
        • Get an Analysis Group
        • Search Analysis Groups
        • Update an Analysis Group
        • Partially Update an Analysis Group
        • Refresh an Analysis Group
        • Delete an Analysis Group
        • Get Feature Importance for an Analysis Group
    • Demand Surge
      • Get Demand Surges
    • Suggested Radius
      • Get Suggested Radius
    • Saved Locations
      • Create a Saved Location
      • Search Saved Locations
      • Get a Saved Location
      • Search Events for a Saved Location
      • Update a Saved Location
      • Delete a Saved Location
    • Loop
      • Loop Links
        • Create a Loop Link
        • Search Loop Links
        • Get a Loop Link
        • Update a Loop Link
        • Delete a Loop Link
      • Loop Settings
        • Get Loop Settings
        • Update Loop Settings
      • Loop Submissions
        • Search Submitted Events
      • Loop Feedback
        • Search Feedback
    • Places
      • Search Places
      • Get Place Hierarchies
  • WebApp Support
    • WebApp Overview
      • Using the WebApp
      • API Tools
      • Events Search
      • How to Create an API Token
    • Getting Started
      • Can I Give PredictHQ a Go on a Free Trial Basis?
      • How Do I Get in Touch if I Need Help?
      • Using AWS Data Exchange to Access PredictHQ Events Data
      • Using Snowflake to Access PredictHQ Events Data
      • What Happens at the End of My Free Trial?
      • Export Events Data from the WebApp
    • Account Management
      • Managing your Account Settings
      • How Do I Change My Name in My Account?
      • How Do I Change My Password?
      • How Do I Delete My Account?
      • How Do I Invite People Into My Organization?
      • How Do I Log In With My Google or LinkedIn Account?
      • How Do I Update My Email Address?
      • I Signed Up Using My Google/LinkedIn Account, but I Want To Log In With My Own Email
    • API Plans, Pricing & Billing
      • Do I Need To Provide Credit Card Details for the 14-Day Trial?
      • How Do I Cancel My API Subscription?
      • Learn About Our 14-Day Trial
      • What Are the Definitions for "Storing" and "Caching"?
      • What Attribution Do I Have To Give PredictHQ?
      • What Does "Commercial Use" Mean?
      • What Happens If I Go Over My API Plan's Rate Limit?
    • FAQ
      • How Does PredictHQ Support Placekey?
      • Using Power BI and Tableau With PredictHQ Data
      • Can I Download a CSV of Your Data?
      • Can I Suggest a New Event Category?
      • Does PredictHQ Have Historical Event Data?
      • Is There a PredictHQ Mobile App?
      • What Are Labels?
      • What Countries Do You Have School Holidays For?
      • What Do The Different Event Ranks Mean?
      • What Does Event Visibility Window Mean?
      • What Is the Difference Between an Observed Holiday and an Observance?
    • Tools
      • Is PHQ Attendance Available for All Categories?
      • See Event Trends in the WebApp
      • What is Event Trends?
      • Live TV Events
        • What is Live TV Events?
        • Can You Access Live TV Events via the WebApp?
        • How Do I Integrate Live TV Events into Forecasting Models?
      • Labels
        • What Does the Closed-Doors Label Mean?
    • Beam (Relevancy Engine)
      • An Overview of Beam - Relevancy Engine
      • Creating an Analysis in Beam
      • Uploading Your Demand Data to Beam
      • Viewing the List of Analysis in Beam
      • Viewing the Table of Results in Beam
      • Viewing the Category Importance Information in Beam
      • Feature Importance With Beam - Find the ML Features to Use in Your Forecasts
      • Beam Value Quantification
      • Exporting Correlation Data With Beam
      • Getting More Details on a Date on the Beam Graph
      • Grouping Analyses in Beam
      • Using the Beam Graph
      • Viewing the Time Series Impact Analysis in Beam
    • Location Insights
      • An Overview of Location Insights
      • How to Set a Default Location
      • How Do I Add a Location?
      • How Do I Edit a Location?
      • How Do I Share Location Insights With My Team?
      • How Do I View Details for One Location?
      • How Do I View My Saved Locations as a List?
      • Search and View Event Impact in Location Insights
      • What Do Each of the Columns Mean?
      • What Is the Difference Between Center Point & Radius and City, State, Country?
Powered by GitBook

PredictHQ

  • Terms of Service
  • Privacy Policy
  • GitHub

© 2025 PredictHQ Ltd

On this page
  • Data Format and Specifications
  • File Format
  • What type of data should I include?
  • Granularity and missing data
  • Bulk uploading Beam analyses

Was this helpful?

  1. WebApp Support
  2. Beam (Relevancy Engine)

Uploading Your Demand Data to Beam

PreviousCreating an Analysis in BeamNextViewing the List of Analysis in Beam

Last updated 1 month ago

Was this helpful?

The dataset is a time series where each record consists of a date and its corresponding value. The supported file format is CSV, with column names specified in the first row and each column separated by a comma.

See also in the Beam API documentation for more details on the upload format.

Data Format and Specifications

  • The CSV file must contain two columns – date and demand. The column headings must be in the first row of the file as date,demand

  • The date format required is ISO date format in the YYYY-MM-DD format. That is year, month, and day. For example 2017-03-29 for 29 March 2017. The file should contain one row per date.

  • Data can be daily or weekly. Daily data should have consecutive dates, while weekly data should have one entry per week.

  • Demand can be any integer or decimal value. In general, we recommend using the same value that is used in your demand forecasting.

  • For daily demand, the minimum amount of data required is 6 months, or 180 data points. Beam can impute up to 20% of missing values, provided that the minimum data requirements are satisfied and there are no more than 7 consecutive days missing.

  • For weekly demand, the minimum amount of data required is 2 years, or 104 data points. Beam can impute up to 10% of missing values, provided that the minimum data requirements are satisfied and there are no more than 5 consecutive weeks missing. All weekly data points must align with the start of the week and occur on the same weekday.

  • Data should start no earlier than 1 January 2017 (2017-01-01) and end no later than one year into the future.

File Format

Here are examples of the correct file format for Beam:

Daily Data

Below is an example of what the file should look like for daily demand data. The column headers must be date and demand only and the date format YYYY-MM-DD to avoid receiving errors.

date
demand

2018-01-01

3278

2018-01-08

4494

2018-01-15

3712

2018-01-22

3900

2018-01-29

5067

2018-02-05

4692

2018-02-12

5161

Weekly Data

Weekly demand data looks the same but each row is a week apart. See below:

date
demand

2018-01-01

3278

2018-01-08

4494

2018-01-15

3712

2018-01-22

3900

2018-01-29

5067

2018-02-05

4692

2018-02-12

5161

Additional Notes

Each date in the uploaded file should correspond to exactly one row to ensure data integrity. If multiple entries for the same date are found, the upload automatically retains the latest entry and ignores earlier values.

What type of data should I include?

We recommend selecting a unit of measure that reflects your specific business activities, such as the unit used in your demand forecasting. This ensures that the data is directly relevant to your analytical needs. For example:

  • Hotels: The total number of rooms booked per day.

  • Restaurants: The number of staff rostered per day if you’re forecasting labor needs.

  • Consumer Packaged Goods (CPG) Companies: Daily inventory numbers.

  • Parking Facilities: The number of bookings for each parking location per day.

You may upload any unit that best represents your demand. Whether it's sales per day, the number of trips for a rideshare service, or any other metric, ensure it aligns with what you aim to analyze using Beam.

Granularity and missing data

It is important that the data is aggregated on a daily level for daily demand or a weekly level for weekly demand. For example, a business might record a demand of 1000 on March 29, 2017, and 800 on the following day.

The demand column should represent a non-negative quantity, with values greater than or equal to 0. Every date in the dataset should correspond to a non-blank, non-null demand value, and every demand entry must have an associated date. While it may be tempting to fill in missing values with zero, this should only be done if zero accurately represents 'no demand' for that period.

If missing data occurs because the system was down or no record was available for a particular day, we suggest leaving that row out of the dataset to maintain accuracy in the results.

Bulk uploading Beam analyses

If you have any problems please and we can help.

If you want to upload a large amount of Beam analyses we recommend using the .

Upload Demand Data
Daily example demand file for Beam
Weekly example demand file for Beam
talk to us
Beam API